Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%

نویسندگان

  • Nathaniel J L K Davis
  • Marcus L Böhm
  • Maxim Tabachnyk
  • Florencia Wisnivesky-Rocca-Rivarola
  • Tom C Jellicoe
  • Caterina Ducati
  • Bruno Ehrler
  • Neil C Greenham
چکیده

Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may ...

متن کامل

Multiple Exciton Generation in Semiconductor Quantum Dots.

Multiple exciton generation in quantum dots (QDs) has been intensively studied as a way to enhance solar energy conversion by utilizing the excess energy in the absorbed photons. Among other useful properties, quantum confinement can both increase Coulomb interactions that drive the MEG process and decrease the electron-phonon coupling that cools hot excitons in bulk semiconductors. However, va...

متن کامل

Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films.

We study multiple exciton generation (MEG) in two series of chemically treated PbSe nanocrystal (NC) films. We find that the average number of excitons produced per absorbed photon varies between 1.0 and 2.4 (+/-0.2) at a photon energy of approximately 4E(g) for films consisting of 3.7 nm NCs and between 1.1 and 1.6 (+/-0.1) at hnu approximately 5E(g) for films consisting of 7.4 nm NCs. The var...

متن کامل

Multiple exciton generation in colloidal silicon nanocrystals.

Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spe...

متن کامل

Two-Photon Absorption and Multi-Exciton Generation in Lead Salt Quantum Dots

Understanding the nonlinear optical processes in semiconductor nanostructures leads to possible applications in areas including laser amplifiers, optical switches, and solar cells. Here we present a study of the frequency degenerate twophoton absorption (2PA) spectrum of a series of PbS and PbSe quantum dots (QDs). The influence of the quantum confinement is analyzed using a four-band model whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015